
Implementation of Sequence to Sequence For

Lyric Generation

Kevin Jesse

June 2018

1 Introduction

Sequence to sequence neural models have been a powerful method for machine
translation tasks. Largely a recurrent neural network, it consists of an encoder
to model the source language and a decoder to generate the translation in the
target language. This method was proposed by Sustskever[16] and Cho[2]. A
proposed optimization for sequence to sequence neural models was an attention
mechanism that will learn to focus on an aligned word from source sentences
when generating the translation word [1]. Various research to improve Bah-
danau’s approach has been done recently. To help with the out-of-vocabulary
problem, byte-pair-encoding is created to segment words into sub-units, which
can be combined to make up the unseen words in the dataset [15]. Another pop-
ular approach was to use linguistic features to improve the machine translation
result [14]. For the final project of linguistics 205, I implemented Bahdanau’s
sequence to sequence neural model with several optimization and aligned it to a
new dataset of Maroon 5 song lyrics. The results demonstrate an ability to learn
and replicate portions of the artists style and lyrics. The generated lyrics show
some structural dependencies that are likely from the optimization decisions.

The optimization include using attention, conditional GRU rather than GRU
for decoder and improved beam search considerations

2 Dataset

The dataset was generated with bilingual machine translation tasks in mind.
Typically there are a set of sentences in a languageX and Y , and a model aims to
learn the relationship between a source and target language. Namely, a sentence
composed of tokens {xi}Ni=1 ∈ X to a sentence made of tokens {yi}Ni=1 ∈ Y .
While the translation is not the goal, the relationship of one lyric line to another
is relevant and can be encapsulated by using the first line as the source language
and the next line as the target language. Semantically, the lines should have
some correlation, and structurally, the lines maintain a rhyming scheme. Thus,
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the source and target machine translation dataset is constructed by offsetting
the song lyric lines breaking on each song.

2.1 Data Collection and Split

To test the lyric generation model, we collected lyrics from a popular band
Maroon 5. The scrapping is done with well known web scraping tool, Beautiful
Soup, to scrape lyrics from all songs at metrolyrics.com. With the lyrics lines
tagged and song separated, we preprocess the lyrics removing anything that
is not a lyrical word. The vocabulary for both source and target language
are the same so we store the same vocabulary for both encoding and decoding
languages. We separate the lyrics by line and song with symbols the neural
machine translator recognizes which is later tagged with the appropriate start
and end characters: < s >, < /s >, and \n. Finally, the data is sampled for
200 lyric lines for both the validation and test set. This leaves about 8500 lyric
lines to be used for training. No song lyrics split across the training, test, or
validation dataset.

2.2 Visualization of Embedding Space

It is important to understand our embedding space of Maroon 5 lyrics. Using
the word embedding that are used for our model, we generate T-SNE plots of
the entire feature space and a portion of that feature space around the word
’cold’. The shape of the embedding space in Figure 2 is likely from the fact that
lyrics surround themselves with unique sets of words on a per song basis.

Figure 1: This is a closer look at the lyric word embedding space around the
word cold
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Figure 2: This is a zoomed out view of the entire embedding space.

3 Method

Prior to passing lyric sequences to the encoder, we filter sequences that have
excessively long lines, greater than 80 characters. Then < s >, < /s >, and \n
is encoded into the raw text. The lyric input is encoded into an N-length source
sentence as a sequence of tokens. Each token is represented by a index value
from the vocabulary space (similar to a one-hot vector). This is then mapped
into the embedding space with an embedding matrix. The designed embedding
space was chosen to be 128.

4 Encoder

The encoder is a bidirectional RNN [12] and processes the embedded tokens
in two directions (forwards and backwards). Each each time step, the encoder
generates a forward and backward hidden state vector and is concatenated to-
gether for the encoder hidden state vector. Formally, let there be hidden state

vectors for each direction
−→
hi =

−−−−−−−−−−→
RNN(hi−1, ei) and

←−
hi =

←−−−−−−−−−−
RNN(hi−1, ei) that is

concatenated as hi = [
−→
hi ,
←−
hi ]. Through hyper parameter tuning, hidden state

size was chosen to be 256.

5 Decoder

The decoder is initialized with the mean of the encoder hidden states from
the representation of the source sentence or first lyric. At each time step, the
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decoder generates a hidden state from the conditional GRU. To implement the
conditional GRU, I followed Nemantus toolkit [13] for the conditional GRU cell
implementation with attention.

5.1 Conditional GRU

The conditional GRU consists of two GRU layers with attention mechanism. At
layer 1, a intermediate state is generated from the hidden state vector from the
previous step and the previous embed word. Specifically, let the intermediate
hidden state be si = GRU1(si−1, wj−1). The Nemantus toolkit conditional
GRU calls for attention on the intermediate hidden state. The context vector
that is used to capture the words the decoder should focus on when generating
a token in target language Y is described as, cj =

∑N
i=1 αjihi. Note that αji

is computed as the softmax of a score function. The score function computes
a set of values from the previous decoder hidden state and the set of encoder
hidden state vectors.

At layer two we use the intermediate state generated from the first condi-
tional GRU and the context from the attention. Formally, this value can be
represented as fi = GRU2(si, cj). Now that we have the hidden state fi, the
conditional distribution of the next token yj can be calculated with a fully con-
nected layer L (to scale the features), and the language embedding features
calculated from the conditional GRUs. By transforming the previous encoded
word, the current decoded word, and the attention vector into the output em-
bedding space, we can construct an activation at such that it can be mapped
with the final fully connected layer and provide an output space embedding.
The activation is

at = tanh(FCeej−1 + FCddj + FCccj)

FC∗ represents the mapping from the embedding space to the output space and
tanh is the activation function. Combining these gives a final activation that is
used in conjunction with the output of the conditional GRU fully connnected
L. This output embedding and pseudo probability distribution is approximated
by

p(yj |yj−1, x) = softmax(Lat)

With the softmax, the final one hot encoded vector is indexed in the vocab-
ulary and provides us with a final word yj .

Finally, our objective function is a simple cross entropy loss function, com-
monly used for label mis-classification. In our model we are using it to indicate
the correct one-hot encoded selected.

Conditional GRUs with attention have been explored and demonstrated to
improve traditional sequence to sequence models [5][9][7][8]. This paper/project
aims to implement existing optimization and apply it in a novel manner to our
artificially constructed dataset.
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6 Experiment

This section explores the evaluation of the conditional GRU sequence to se-
quence does with the lyric dataset.

6.1 Training

The word embedding size for the encoder and decoder are 128. The encoder
uses a bidirectional GRU [3] and the decoder is composed of two conditional
GRUs and a fully connected layer. I used Adam [4] to optimize the model with
a learning rate of .0004 and a batch size of 32; the batch size plays an important
role in the stable evaluation of Adam. The gradient norm is clipped to one to
avoid exploding gradients often experienced by RNNs[11]. We apply dropout
at the embedding layer of the encoder, context vectors, and output layer of
decoder. All weights are initialized with Kaiming’s method [6]. The training
learning rate decays by .2 when our evaluation metric (BLUE score) does not
increase every 10 rounds. The model is tested every thousand iterations and a
sample lyric is dumped for a sanity test.

6.2 Evaluation Metric

BLUE is not the ideal metric for this application because it is designed for
bilingual machine translation; if this research is ever carried out further, I hope
to find a better evaluation metric. However, the model returning the BLUE score
provided more intelligible results than using pure loss [10]. This is expected as
the BLUE score takes into consideration the quadgram probability, clips word
frequency of candidate sequence, and the length normalization as to not favor
shorter sequences.

7 Results

The BLUE score is surprisingly high for the model on the lyric dataset. Our
model achieved a score of 24.8 BLUE score to the target language or sequential
lyrics. I believe that the model achieved such a score because it learned to
match portions of lyrics from various songs. While not as organic as possible,
the model does seem to capture the rhyming. You can see this in 1.

The relatively good performance is likely because of the improved beam
search decoding for the generation of the ’translation’. Typically beam search
encoding favors sorter sentences over longer sentences, but we apply length nor-
malization to resolve this traditional issue. The adaptive learning rate also helps
the model adjust the training pace based on the performance of the validation
set. The final optimization that helps is that the input to the decoder cGRU
is not always the ground truth translation. We allow the model to have some
chance to use the translation toke predicted from the encoder. This means our
model is better simulation the same translation process as when applied to the
test set. This ’noise’ also helps to not overfit on the training set.
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1 Source: try to do what lovers do ooh
2 Predicted: love youre in my head and all of my you

1 Source: the way i used to love you oh
2 Predicted: as i wonder where were you

1 Source: and i do not understand i cannot comprehend.
2 Predicted: this love has taken its toll on me

1 Source: and im yelling and screaming cause
2 Prediction: i was not get to hear your head

Table 1: Sample output of the sequential source and target lyrics from the
neural machine translation model

7.1 Further Optimization

The sequence to sequence model could improve with a few modifications. Cur-
rently the model is restrictive on repetitive words, but often in lyrics the same
word will repeat. This constraint will be removed in the next iteration of the
model. Furthermore attention may not be a good solution for this specific ap-
plication, as it locks in on specific parallel words. As lyrics are misaligned for
translation, there is not a clear indication that attention provides an major
improvement; this should be examined closer.

7.2 Project Difficulties

Originally, the plan was to adopt a handwritten sequence to sequence model on
bad plots. After gathering the data, the tweets and information were poorly
aligned and fixing the dataset would of required significant human computation
hours. To adjust this problem, I adapted the task to Maroon 5 lyrics after seeing
them live last Friday.

8 Conclusion

This paper implemented a sequence to sequence neural machine translation
model from scratch with Bahdanau optimizations. We applied this high per-
forming model on a unique dataset of Maroon 5 lyrics. The implementation
performs well with coherent lyric generation and a good BLUE score. The code
for this project is located on github1. The project served as hands on instruc-
tion for word vector embeddings, RNNs and GRUs, N-Grams, BLUE score,
Encoder/Decoder architecture and more.

1https://github.com/kevinjesse/lyricNMT
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